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ABSTRACT 

/  . 

k i 

i '. 

Ji. 
Our major objective is to obtain an approximation for 

the average time spent waiting in queue by a customer in an 

M/G/k queueing system—call it  W  .  This is done by means 

of an approximation assumption presented tt»-Cegtiren—«£> which 

is shown to be asymptotically valid both in heavy and in 

light traffic.  In Saotion .1+  the approximation assumption 

is used to derive an approximation for W .  Numerical 

comparison with tables given by Hillier-Lo in the special 

case of Erlang service times indicate that the approximation, 

which depends on the service distribution only through its 

first two moments, works remarkably well.  In addition, as a 

by-product of our analysis, we also obtain approximations 

for the distribution of the number of busy servers and the 

mean length and number of customers in a busy period.  These 

latter approximations depend on the service distribution only 

through its mean. > 

In Section £7 we »how-thaj» the approximation assumption 

is valid and leads to the exact result in the case of a 

limited capacity system where no queue is allowed to form. 
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APPROXIMATIONS IN MULTI-SERVER POISSON QUEUES 

by 

Shirley A. Nozaki and Sheldon M. Ross 

0.  INTRODUCTION AND SUMMARY 

In this paper we consider an M/G/k queueing system - that is a system in 

which customers arrive in accordance with a Poisson process having rate I   , 

and are serviced by one of k servers, each of whom has service distribution 

G .  Upon arrival a customer will either enter service if at least one server 

is free or else join the queue if all servers are busy.  Our results will be 

Independent of the order of service of those waiting in queue as long as it is 

supposed that a server will never remain idle if customers are waiting.  To 

facilitate the analysis, however, we will suppose a service discipline of 

spent waiting in queue by a customer - call it Wn .  This is done by means of 

an approximation assumption presented in Section 2, which is shown to be 

asymptotically valid both in heavy and in light traffic.  In Section 3 the 

approximation assumption is used to derive an approximation for W  .  Numerical 

i comparison with tables given by Hillier-Lo in the special case of Erlang service 

J times indicate that the approximation, which depends on the service distribution 

•J only through its first two moments, works remarkably well.  In addition, as a 

by-product of our analysis, we also obtain approximations for the distribution 

of the number of busy servers and the mean length and number of customers in a 

busy period.  These latter approximations depend on the service distribution 

only through its mean. 

In Section 4 we show that the approximation assumption is valid and leads 

to the exact result in the case of a limited capacity system where no queue is 

allowed to form. 

i § 
, "first come first to enter service."                                            3 

' I- 
! i ) Our major objective is to obtain an approximation for the average time 

> 
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Future research plans are Indicated In Section 5. 

Throughout this paper we suppose that 

x/xdGCx) < 1c 

0 

and 

x dG(x) < « . 
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1.     BASIC DEFINITIONS AND FUNDAMENTAL EQUATION 

We shall need  the following notation; 

v 

S: 

W, 

the steady state probability that there are 1 people in the 

system 

a service time random variable, i.e., P{S < x} ■ G(x) 

the average amount of time that a customer spends waiting in queue 

(does not include service time) 

the (time) average number of customers waiting in queue 

the (time) average amount of work in the system, where the work 

in the system at any time is defined to be the total (of all servers) 

amount of service time necessary to empty the system of all those 

presently either being served or waiting in queue. 

■ i 

We will make use of the following idea (previously exploited in such 

papers as [1], [2] and [5]) that if a (possibly fictitional) cost structure is 

imposed, so that customers are forced to pay money (according to some rule) 

to the system, then the following identity holds - namely 

(time) average rate at which the system earns money 

(1)       ■ average arrival rate of customers * average amount 

of money paid by a customer. 

A heuristic proof of the above is that both sides of (1) times T is 

approximately equal to the total amount of money paid to the system by time 

T , and the result follows by dividing by T and then letting T -♦ « . 

A rigorous proof along these lines can easily be established In the models 
we consider since all have regeneration points. More general conditions 
under which it is true are presented in [1]. 

■■    -,..- ■■•..^■..^.,,.. ^ .,.,......,..■...■.:;....,■...  .    -,I,,-,■ „. ;.,, ■ ■ ,r;.-,hlMfeAiaMM^^diMAn,; r.^m»''..■^■-''--■-.>. --^L-i- ^-..^■ ^-^.^ii.,;.,.---A^-:.■tlLJ-i^.^-„n,'-^w--~l-.i-.'..:'—■-.. 
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By choosing approprx&te cost rules many useful formulas can be obtained 

as special cases of (1).  For instance by supposing that each customer pays 

$1 per unit time while in service, Equation (1) yields that 

(2) average number  in service - XE(S] 

Similarly by supposing that each customer pays  $1 per unit time while waiting 

in queue,  we obtain from (1)  that 

(3) I       •'Ml 
LQ       WQ 

Also, if we suppose that each customer in the system pays $x per unit time 

whenever its remaining service times is x , then (1) yields that 

I E " 

M ; 

i I 

V = XE 

(A) 
/ 

SW + / (S - x)dx 

, E(SW*) + E(S2)/2 

- XE[S]W + XE[Si]/2 

where Wn  is a random variable representing the (limiting) amount of time 

that the n-th customer spends waiting in queue. 

Equation (4) will be of particular use to us. 

Another important fact which we shall use is that, since our arrival 

stream of customers is a Poisson process, the probability structure of what 

an arrival observes is identical to the steady state probability structure of 

the system.  Thus, for instance XE[S] will equal the average number of 

busy servers that an arrival observes;  V , will equal the average amount of 

Intuitively this is so since for a Poisson arrival process (a) the distribution 
of the times at which arrivals occur is uniform, and (b) given that an arrival 
occurs at time t , the conditional distribution for the remaining arrivals is 
the same distribution as for the original Poisson process. 

 -.■,.>.,.v....^....„,.^/ tl,^.*.,.:,..:: ., gjgjugy .,„...,....:.„.,  |i||MM|iaMji|iag|ag|(ttg^ 
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work In the system as seen by an arrival; and P  , the probability that an 

arrival finds 1 people presently In the system. 

As a result of the above we may write Equation (1) as 

Average rate at which system earns money 

(5)       " ^ I PJ 
x average amount paid by a customer finding 

1 
1 people already In the systeai when he arrives. 

jafifa.«^;iite.^ytt^^ 
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2. THE APPROXIMATION ASSUMPTION 

Let G  denote the equilibrium distribution of G .  That is, 

v-Z^HifP^, 

also let 

(1 if x ' y 
6(x.y) -{ 

10 if x t y 

We shall make the following approximation assumption. 

Approximation Assumption: 

Given that a customer arrives to find i busy servers, 1 > 0 , then 

i - 6(i,k) customers being served has a joint distribution that is approximately 

that of independent random variables each having distribution G 

Heuristic Remarks Concerning the A.A.; 

1.  First we note that the A.A. is asymptotically true either in heavy 

I traffic (that is, as XE[S] ■* k) or in light traffic (that is, as 

XE[S] -+■ 0). This is so in heavy traffic since the great majority 

of arrivals will encounter a large queue and as a result the k 

departure processes (one for each server) they observe will be 

approximately Independent delayed renewal processes. Hence, consider- 

ing those customers served by server i , it follows that when they 

enter service they would have been observing k - 1 independent 

delayed renewal processes for a large time, and the A.A. follows 

since the limiting distribution of excess in a renewal process is 

just Ge . 

{ at the time that he enters service, the remaining service times of the other 

HJliiUll.,AK.-....if^..J.t;.^,„i^:-iJfc. ...^...■^......■..■^■w^.^ iLäj6miMmtiäMäiüaüjKfiMmst^^ 
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In extremely light traffic the great majority of arrivals will 

find either 0 or 1 busy servers. Now since Polsson arrivals see the 

system as It Is (averaged over all time) It follows that arrivals 

finding 1 server busy would encounter the same additional service 

time (for the busy server) as would random (and uniform) time sampling 

of the excess of a renewal process.  Hence, the A.A. follows In light 

traffic from the renewal process (excess) result. 

; i 

2.  In fact the same reasoning given above for light traffic shows that 

if we isolate attention upon a particular server, then whenever 

customers arrive to find this server busy, the remaining service 

time will have distribution G  .  Now it should be noted that this 
e 

is not the same as saying (as the A.A. does) that the remaining 

service time of this server will have distribution G  at the moment 
e 

when a customer is about to enter  service (as opposed to when he 

arriveB) .     However we might hope that it should be close. 

j 

3. Additional heuristics for the A.A. follows from the fact that it is 

known to be (exactly) true when no queue is allowed (see Section 4), 

( 
^ 

11 

i • i ' iilliiiifilliM'irttol'tu ■- — - - - - -     — -.--'- .■,„ iiiimiimiii. 1——-■■■ ■'— ^-^MjUigilMMl 



T^ ■ ,'IJ^    . .T'W '   \tm       ■" IWÜMWH11'1«!! 
»■ ssH«^ 

?^'.':,!3"',1T'-^,TT
1P
'«

I;
T^"'''

T
'' "W"" ^r""tWTV^-J-. n 

8 

fn   f 

K5  ♦ 

I 

3.  THE /JTROXIMATION 

For any arbitrary arrival we have the following Identity: 

work In the system at the time of his arrival 

» k * time he spends waiting In queue + R 

where 

R ■ sum of the remaining service times of all those being 

served at the time when the arrival enters service. 

Taking expectations yields, since a Polsson arrival sees the system as 

it is in steady state, that 

V - kW + E[R] . 

To obtain E[R]  we condition on B , the number of servers that are busy when 

the customer arrives. 

E(R] = E[E(R/B'.] 

E[B - 6(B,k)] |^g| 

where the last equation follows from the A.A., and the fact that J xdG (x) 
( 

E(S  ]/2E[Sl   .     Since     E[B]   =  XE[S]     from Equation   (2),  we obtain  that 

|    t- 
E[R]   «A 

EIS
2
! 

E[S2] 

Ei^l 
2E[S] 

iisiip 
2E[S1  rk 

P{B -  k} 

where 

k-1 

Pk - 1 -    I    Pi K i-0    1 

«i^^a^^^-tAL^j-M^a^wM^^.—^^^^^^^n^^^i:ijlAi^lti^^^*k^M^^ 



Hence, 

v-V^-lfc 
However, from Equation (4) we know that 

V - XE[S]WQ + X  ^yJ- 

Impiying that 

ElS2]?, 
(6) W 

Q  2E[S](k - XE[S]) 

iÖ 

Thus we need    P.    .     To obtain the probability distribution of the number of busy 

servers we  impose the following fictitional cost  structure - namely that the    i 

oldest  customers  in  the  system pay $1  per unit  time,     i  "  1,2,   ...,  k  , where 

the age of a customer  is measured from the moment  it enters the system.    Hence, 

letting    S   ,S^,   ....   S^ denote    k -  1    Independent  random variables each 

having distribution    G      we obtain  from Equation   (5)  that 

P1  + 2P2  +  •••   +  (1 - DP^ + i(l  *  p0 "  •"  " ?
i^ 

- X(P0 +  •••  + P^ElS]  + ^E   (s - mln(s^,S^,   ...,  sj)j J 

+ APi+1E MS  -  2nd  smalle9t  of     (s® Si+l)) 

(7) 

+ XPk-2E 

+ X(l  -  P 

(s  -   (k -  1  -  i)th smallest  of     /s^.   ....   S^_2)) 

'"   -  Pk_2)E  (s -   (k -  l)th  smallest  of     /s®,   ....  S*  Jj 

1-1,   ....  k 

P1 + 2P2 +  ...  +  (k - l)Pk_1 + k(l  - P0 -  •..   - Pk-1) - XE[S] 

m 
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; (i 

'x    If    x > 0 
where    x To understand the above equations suppose  first 

(-     , \ |0 if x < 0: 

that i < k .  Now as only the  i oldest pay it follows that when J customers 

are present the system earns at a rate J when J < 1 and at a rate 1 when 

j > 1 . Hence the left side of Equation (7) represents the average rate at 

which the system earns.  On the other hand an arrival finding fewer than 1 

customers already in the system will Immediately go into service and will pay 

a total amount equal to his service time; while an arrival finding j present, 

k. - 1 > J > i will also go Immediately into service but will only begin paying 

when j - 1 + 1 of the j others in service leave.  Thus In this latter case. 

under the A.A., the arrival would expect to pay a total of  E 
fr- 

(J + 1 - Dth 

smalles t of  fs^.Sj, .... S*))        .  Finally if the arrival found more than k - 2 

busy servers then he will begin paying after k - 1  of those customers In service 

when he enters service leave the system.  This explains the first k - 1 of the 

set of Equation (7).  The last equation (when i - k) easily follows since in 

this case each customer will pay a total equal to his time In service. 

To simplify the set of Equation (7) we will need the following lemma. 

Lemma 1: 

e e If    S,S   ,   ....   S       are  independent  random variables such that    S    has 

distribution    G    and  the others     G    ,  then e 

*- 
jth smallest °f ft s:))+] - Hr^ E'S> 

Proof: 

Using the  identity 

(x -  y)    » x - mln(x,y) 

■  - -  ■ ■' ' ^—^•^- '■■"•^nim if)    ■■-^■■■..■■- ,..:....*.^<..~-,---:.^*mAl ■"-■-  ■■■* 
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we have that 

Now, 

E US - jth smallest of    S*    ...,  S®) 

E[S]   - Ehnin^S,  Jth smallest of    S^,   ....   sMl  . 

E min/S,  jth smallest of    S*.   ...,   Se| 

OD 

/P{S  >  a}p|jth smallest  of     (s®,   ....  S®\  > alda 

.!: 

*%1   1 

-  H ' 

^(1  - G(a))     I    ([)  (Ge(a))1(l G   (a))r"ida 

iri 
E[S] 

Ji   (MA^i-y)^ 

"" £ 0 HfeS 

( 
by the substitution 

y - Ge(a) 

(1 - G(a)) A \ dy " V E[SI l   daj 

E[S] J_ 
r + 1 

which proves the lemma.■ 

Hence, using Lemma 1, the Equation (7) become 

P1 + 2P2 + ••• + (i - l)Pi_1 + Kl - P0 " '•• " P^) 

- x(po+ •••+ pi-i)E[s] + APi rrrEls] + ••'+ x\-i irh:Elsl 

(8) 

+ X(l  - P, - W ü ^ • i -  1,   ....  k - 1 

P1  + 2P2 +  •••  +  (k  -  l)Pk_1 + k(l - P0 -   •••  -  P^) 

AE[S]   . 

 - -...   - i - i — tti ■■■-■—■^—■^-^-^ ji -'■- ■-.^■^^^**^ 
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I   '. 

r*     !■ 

Now, as the above equations for the P  ,1"0,1, ...,k-l, depend 

only on G through E[S]  and as the equations are exactly true when G is 

exponential (since the A.A. is exact when G is exponential) it follows (since 

it can be shown that the set of equations has at most one solution) that the 

solution of (8) is identical to the well known solution in the case M/M/k. 

That is, 

fk-l 

Ln=0 
(XE[S])   /nl  + mm. 

(k - l)!(k -  XE[S]) r 
and 

(XE[S]) 
i! 1. .  k - 1 

Hence, 

* » 
Pk = 

(k - DKk - msi) 

(AE[S])' 

V (^[s])n . 
n=0 

C^ts])' 
(k -  l)!(k -  XE[S]) 

and our approximation for W  is thus given by 

(9) W    = 
Q 

>kE[S2](E[S])k~1 

2(k - l)!(k -  AE[S))' 
kr1   (XE[S])n (AE[S])k 

ni0 n! (k -   l)!(k -   XE[S]) 

In  the special  case of  two servers,    k = 2   ,  we have  that 

5    1   (*E[S]r 
2       2 + XE[S] 

when    k =  2 

and   (9)  reduces  to 

^■..^..■^ ...—    .   .  .  .^—^ --■—...  — lämm^m^M^^^äL^^ta^ 
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W 
X2E[S2]E[S] 

Q  2(2 - AE[S])(2 + XE[S]) 
when k ■ 2 . 

Numerical tables for L0 have been published by Hllller and Lo in the 

special case M/E /k, where  E  represents an Erlang distribution with r 

phases. That is, a service time has the same distribution as the sum of r 

Independent and identically distributed exponential random variables. The 

following tables compares our approximate formula for Ln  (namely XW») 

with the Hilller-Lo tables. 

It is also interesting to see how our approximation for the probability 

that all servers are busy (call it  P{all busy}) compares with the actual 

values in the special case M/E /k.  Again referring to the Hilller-Lo tables 

we have Table 3. 

Remarks: 

:  ) 

1.  It Is Interesting to note that In all cases the approximation for Wn 

is slightly less than the exact value in the case of Erlang service 

times. While the reason for this Is by no means apparent and further 

study is clearly Indicated the authors feel that it may be relevant 

that the Erlang is an increasing failure rate distribution. 

f   ' 2.  The approximation for Pn  also leads to approximations for E(B] 

and E(C] , the expectations of the length of and the number of 

customers served in a busy period.  This follows since from the theory 

of alternating renewal processes we have that 

1/A 
0  1/X + E[B] 

or 

E[B] 
XP« 

mfeikifliitadwbf .j^^^.mm^^mmimmmm mtt/Ummmm am a mr iniririm igagjaiiMiig^giiiiiM^^ 



in., 11 in i III,I»I. ^imm^^im^mmMmmmm^. »»mi N I .1.1 (JP-MN^^-^ST""»' 'T'-yvr^T^W^r 

14 

I      t 'i    ' 

I 
i 

Also,  letting    X      denote  the time between the 1-th and   (1 + l)8t 

arrival then 

'  C 

I   xl 
.1-1    . 

E[B] + l/X   . 

However, by Wald's equation 

C 

.1-1      - 

E[C]/X 

ni   . 

and so 

E[C]   -  XE[B]  + 1 

-  1/P«   • 

,_    ."-»i!J—*'-.-Vr^.a./.iHn^w..^mül ;I.-',J^^   -   -- ■   ■  — ■— —— — — 
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4.  NO QUEUE ALLOWED - ERLANG'S LOSS FORMULA 

In this section we suppose that arriving customers that find all servers 

busy are lost to the system.  In this case It Is known (see [6]) that the A.A. 

Is exact.  The limiting probabilities can be obtained by again supposing 

that the  1 oldest customers pay $1 per unit time while In the system. 

From the fundamental Equation (5) and Lemma 1 we obtain the equation 

P1 + 2P2 + ... + (1 - DP^-L + i(l - PQ - "l-l* 

X(P0+ ... + p^S] + XP1 rTT E[S] + .«. + XP k-2 r^-rEtsl + xpi-i iE[sl • 
1 k - 1 

m i 

P + 2P2 + ..« + kPk - X(l - Pk)E[S] . 

The above equations, along with the equation, 

I Pi - 1 
1-0 1 

can now be solved to yield the well known  result known as Erlang's loss  formula 

namely 

I   \ 
>    .       (XE[S])Vl! 
1        k 

I    (XE[S])n/n! 
n-0 

i - 0,1,   ..., k 

^-ü^aa^dMaio^fljoBtsj*^ . j-. ■■ ■ "Vi-i vnM>ifti(i ii[iiir,;- f Ji iiri'jiTfthMa'tin '-■""■■•-'■"-    — •-"•■■^■'-'-I-"^—^'-'-^.~..^.».-. ■.-■... —— — ■MUM 
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5.  FUTURE RESEARCH 

In future work the authors are planning to employ the approach of the 

present paper to obtain an approximation for W  In such extensions as 

(I) finite capacity models 

(II) batch arrival models 

(III) models In which each server has a different service 

distribution. 

It Is felt that such models have great applicability In the real world. 

.'.:;.?...■Ut.W.LJ-. ^.^■,,.„l^l..i,.,1Li;.   .L.u.    L^.^-,; .■■ J, J--:.,.;.,^ ^{flMWi^tllmilllMim^ 
—"-"'•'"-'■^"--^ 
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